3.14.91 \(\int (a+b x) (c+d x)^{3/2} \, dx\) [1391]

Optimal. Leaf size=42 \[ -\frac {2 (b c-a d) (c+d x)^{5/2}}{5 d^2}+\frac {2 b (c+d x)^{7/2}}{7 d^2} \]

[Out]

-2/5*(-a*d+b*c)*(d*x+c)^(5/2)/d^2+2/7*b*(d*x+c)^(7/2)/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 42, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {45} \begin {gather*} \frac {2 b (c+d x)^{7/2}}{7 d^2}-\frac {2 (c+d x)^{5/2} (b c-a d)}{5 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)*(c + d*x)^(3/2),x]

[Out]

(-2*(b*c - a*d)*(c + d*x)^(5/2))/(5*d^2) + (2*b*(c + d*x)^(7/2))/(7*d^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int (a+b x) (c+d x)^{3/2} \, dx &=\int \left (\frac {(-b c+a d) (c+d x)^{3/2}}{d}+\frac {b (c+d x)^{5/2}}{d}\right ) \, dx\\ &=-\frac {2 (b c-a d) (c+d x)^{5/2}}{5 d^2}+\frac {2 b (c+d x)^{7/2}}{7 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 30, normalized size = 0.71 \begin {gather*} \frac {2 (c+d x)^{5/2} (-2 b c+7 a d+5 b d x)}{35 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)*(c + d*x)^(3/2),x]

[Out]

(2*(c + d*x)^(5/2)*(-2*b*c + 7*a*d + 5*b*d*x))/(35*d^2)

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 2 in optimal.
time = 2.33, size = 78, normalized size = 1.86 \begin {gather*} \text {Piecewise}\left [\left \{\left \{\frac {2 \left (-2 b c^3+c^2 d \left (7 a+b x\right )+d^2 x \left (14 a c+7 a d x+8 b c x+5 b d x^2\right )\right ) \sqrt {c+d x}}{35 d^2},d\text {!=}0\right \}\right \},c^{\frac {3}{2}} \left (a x+\frac {b x^2}{2}\right )\right ] \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[(a + b*x)^1*(c + d*x)^(3/2),x]')

[Out]

Piecewise[{{2 (-2 b c ^ 3 + c ^ 2 d (7 a + b x) + d ^ 2 x (14 a c + 7 a d x + 8 b c x + 5 b d x ^ 2)) Sqrt[c +
 d x] / (35 d ^ 2), d != 0}}, c ^ (3 / 2) (a x + b x ^ 2 / 2)]

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 34, normalized size = 0.81

method result size
gosper \(\frac {2 \left (d x +c \right )^{\frac {5}{2}} \left (5 b d x +7 a d -2 b c \right )}{35 d^{2}}\) \(27\)
derivativedivides \(\frac {\frac {2 b \left (d x +c \right )^{\frac {7}{2}}}{7}+\frac {2 \left (a d -b c \right ) \left (d x +c \right )^{\frac {5}{2}}}{5}}{d^{2}}\) \(34\)
default \(\frac {\frac {2 b \left (d x +c \right )^{\frac {7}{2}}}{7}+\frac {2 \left (a d -b c \right ) \left (d x +c \right )^{\frac {5}{2}}}{5}}{d^{2}}\) \(34\)
trager \(\frac {2 \left (5 b \,d^{3} x^{3}+7 a \,d^{3} x^{2}+8 b c \,d^{2} x^{2}+14 a c \,d^{2} x +b \,c^{2} d x +7 a \,c^{2} d -2 b \,c^{3}\right ) \sqrt {d x +c}}{35 d^{2}}\) \(70\)
risch \(\frac {2 \left (5 b \,d^{3} x^{3}+7 a \,d^{3} x^{2}+8 b c \,d^{2} x^{2}+14 a c \,d^{2} x +b \,c^{2} d x +7 a \,c^{2} d -2 b \,c^{3}\right ) \sqrt {d x +c}}{35 d^{2}}\) \(70\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/d^2*(1/7*b*(d*x+c)^(7/2)+1/5*(a*d-b*c)*(d*x+c)^(5/2))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 33, normalized size = 0.79 \begin {gather*} \frac {2 \, {\left (5 \, {\left (d x + c\right )}^{\frac {7}{2}} b - 7 \, {\left (b c - a d\right )} {\left (d x + c\right )}^{\frac {5}{2}}\right )}}{35 \, d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

2/35*(5*(d*x + c)^(7/2)*b - 7*(b*c - a*d)*(d*x + c)^(5/2))/d^2

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (34) = 68\).
time = 0.30, size = 69, normalized size = 1.64 \begin {gather*} \frac {2 \, {\left (5 \, b d^{3} x^{3} - 2 \, b c^{3} + 7 \, a c^{2} d + {\left (8 \, b c d^{2} + 7 \, a d^{3}\right )} x^{2} + {\left (b c^{2} d + 14 \, a c d^{2}\right )} x\right )} \sqrt {d x + c}}{35 \, d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2/35*(5*b*d^3*x^3 - 2*b*c^3 + 7*a*c^2*d + (8*b*c*d^2 + 7*a*d^3)*x^2 + (b*c^2*d + 14*a*c*d^2)*x)*sqrt(d*x + c)/
d^2

________________________________________________________________________________________

Sympy [A]
time = 0.17, size = 146, normalized size = 3.48 \begin {gather*} \begin {cases} \frac {2 a c^{2} \sqrt {c + d x}}{5 d} + \frac {4 a c x \sqrt {c + d x}}{5} + \frac {2 a d x^{2} \sqrt {c + d x}}{5} - \frac {4 b c^{3} \sqrt {c + d x}}{35 d^{2}} + \frac {2 b c^{2} x \sqrt {c + d x}}{35 d} + \frac {16 b c x^{2} \sqrt {c + d x}}{35} + \frac {2 b d x^{3} \sqrt {c + d x}}{7} & \text {for}\: d \neq 0 \\c^{\frac {3}{2}} \left (a x + \frac {b x^{2}}{2}\right ) & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(d*x+c)**(3/2),x)

[Out]

Piecewise((2*a*c**2*sqrt(c + d*x)/(5*d) + 4*a*c*x*sqrt(c + d*x)/5 + 2*a*d*x**2*sqrt(c + d*x)/5 - 4*b*c**3*sqrt
(c + d*x)/(35*d**2) + 2*b*c**2*x*sqrt(c + d*x)/(35*d) + 16*b*c*x**2*sqrt(c + d*x)/35 + 2*b*d*x**3*sqrt(c + d*x
)/7, Ne(d, 0)), (c**(3/2)*(a*x + b*x**2/2), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 192 vs. \(2 (34) = 68\).
time = 0.00, size = 300, normalized size = 7.14 \begin {gather*} \frac {\frac {2 b d^{2} \left (\frac {1}{7} \sqrt {c+d x} \left (c+d x\right )^{3}-\frac {3}{5} \sqrt {c+d x} \left (c+d x\right )^{2} c+\sqrt {c+d x} \left (c+d x\right ) c^{2}-\sqrt {c+d x} c^{3}\right )}{d^{3}}+\frac {2 a d^{2} \left (\frac {1}{5} \sqrt {c+d x} \left (c+d x\right )^{2}-\frac {2}{3} \sqrt {c+d x} \left (c+d x\right ) c+\sqrt {c+d x} c^{2}\right )}{d^{2}}+\frac {4 b c d \left (\frac {1}{5} \sqrt {c+d x} \left (c+d x\right )^{2}-\frac {2}{3} \sqrt {c+d x} \left (c+d x\right ) c+\sqrt {c+d x} c^{2}\right )}{d^{2}}+4 a c \left (\frac {1}{3} \sqrt {c+d x} \left (c+d x\right )-c \sqrt {c+d x}\right )+\frac {2 b c^{2} \left (\frac {1}{3} \sqrt {c+d x} \left (c+d x\right )-c \sqrt {c+d x}\right )}{d}+2 a c^{2} \sqrt {c+d x}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(d*x+c)^(3/2),x)

[Out]

2/105*(105*sqrt(d*x + c)*a*c^2 + 70*((d*x + c)^(3/2) - 3*sqrt(d*x + c)*c)*a*c + 35*((d*x + c)^(3/2) - 3*sqrt(d
*x + c)*c)*b*c^2/d + 7*(3*(d*x + c)^(5/2) - 10*(d*x + c)^(3/2)*c + 15*sqrt(d*x + c)*c^2)*a + 14*(3*(d*x + c)^(
5/2) - 10*(d*x + c)^(3/2)*c + 15*sqrt(d*x + c)*c^2)*b*c/d + 3*(5*(d*x + c)^(7/2) - 21*(d*x + c)^(5/2)*c + 35*(
d*x + c)^(3/2)*c^2 - 35*sqrt(d*x + c)*c^3)*b/d)/d

________________________________________________________________________________________

Mupad [B]
time = 0.21, size = 29, normalized size = 0.69 \begin {gather*} \frac {2\,{\left (c+d\,x\right )}^{5/2}\,\left (7\,a\,d-7\,b\,c+5\,b\,\left (c+d\,x\right )\right )}{35\,d^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)*(c + d*x)^(3/2),x)

[Out]

(2*(c + d*x)^(5/2)*(7*a*d - 7*b*c + 5*b*(c + d*x)))/(35*d^2)

________________________________________________________________________________________